skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Edgar, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Landscape drying associated with permafrost thaw is expected to enhance microbial methane oxidation in arctic soils. Here we show that ice-rich, Yedoma permafrost deposits, comprising a disproportionately large fraction of pan-arctic soil carbon, present an alternate trajectory. Field and laboratory observations indicate that talik (perennially thawed soils in permafrost) development in unsaturated Yedoma uplands leads to unexpectedly large methane emissions (35–78 mg m−2 d−1summer, 150–180 mg m−2 d−1winter). Upland Yedoma talik emissions were nearly three times higher annually than northern-wetland emissions on an areal basis. Approximately 70% emissions occurred in winter, when surface-soil freezing abated methanotrophy, enhancing methane escape from the talik. Remote sensing and numerical modeling indicate the potential for widespread upland talik formation across the pan-arctic Yedoma domain during the 21stand 22ndcenturies. Contrary to current climate model predictions, these findings imply a positive and much larger permafrost-methane-climate feedback for upland Yedoma. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. null (Ed.)
  3. Abstract The impact of permafrost thaw on hydrologic, thermal, and biotic processes remains uncertain, in part due to limitations in subsurface measurement capabilities. To better understand subsurface processes in thermokarst environments, we collocated geophysical and biogeochemical instruments along a thaw gradient between forested permafrost and collapse‐scar bogs at the Alaska Peatland Experiment site near Fairbanks, Alaska. Ambient seismic noise monitoring provided continuous high‐temporal resolution measurements of water and ice saturation changes. Maps of seismic velocity change identified areas of large summertime velocity reductions nearest the youngest bog, indicating potential thaw and expansion at the bog margin. These results corresponded well with complementary borehole nuclear magnetic resonance measurements of unfrozen water content with depth, which showed permafrost soils nearest the bog edges contained the largest amount of unfrozen water along the study transect, up to 25% by volume. In situ measurements of methane within permafrost soils revealed high concentrations at these bog‐edge locations, up to 30% soil gas. Supra‐permafrost talik zones were observed at the bog margins, indicating talik formation and perennial liquid water may drive lateral bog expansion and enhanced permafrost carbon losses preceding thaw. Comparison of seismic monitoring with wintertime surface carbon dioxide fluxes revealed differential responses depending on time and proximity to the bogs, capturing the controlling influence of subsurface water and ice on microbial activity and surficial emissions. This study demonstrates a multidisciplinary approach for gaining new understanding of how subsurface physical properties influence greenhouse gas production, emissions, and thermokarst development. 
    more » « less